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TRANSFORMATION OF TWO AND THREE-DIMENSIONAL
REGIONS BY ELLIPTIC SYSTEMS

A major portion of our effort during this period has been in transferring
our computational work from the LRC computer to the IRIS Graphics Workstation
at MSU. Our first successful application was in the computation of a
conservative solution of a simple hyperbolic equation on an overlapping grid.
That example is included in the attached report. The report is a revision of
work included in our last status report, and the results will be presented at
the First International Conference on Numerical Grid Generation. As our
experience on the IRIS increases, more complicated geometric configurations
will be considered. Several conclusions concerning computations on
overlapping grids are apparent. Problems only occur when there is a major
difference in grid spacing on the individual component grids. In the case of
hyperbolic equations, it is necessary that both interpolation and
extrapolation be applied at the grid boundaries. When interpolated values are
used at outflow boundary points, excessive oscillations in the numerical
solution may be the result. The same conclusions would be valid for more
complicated systems of hyperbolic equations such as the Euler equations for
inviscid flow. Some of the solution values would be extrapolated at the
overlap boundary, the exact number depending on the number of characteristics
pointing out of the overlap region. It is also possible that similar boundary
conditions may be needed for some parabolic equations such as high Reynolds
number viscous flow equations.

Considerable effort has been expended on the development of
three-dimensional conservative interpolation procedures. While the
theoretical development is a straight forward extension of the two-dimensional

concepts, the technical difficulties in implementing a feasible algorithm



appear to be overwhelming. Consequently, our work on three-dimensional
problems will be limited to the case where the overlap boundaries coincide
with grid surfaces. Further progress in three-dimensions will await the final
algorithm development and verification of the general two-dimensional method.

We have begun our investigation of grid smoothing procedures during this
reporting period. Although no significant new results can be reported, the
direction of future research has been established. It has been decided that
the first grid smoothing algorithms will be based on the concepts of
variational grid generation. 1In recent years there have appeared several
modifications of the basic variational method, but in all cases the
fundamental idea is to control geometric grid quantities such as distance
between points, angle of intersection of grid lines, and cell volumes. Thus
consideration is given to all grid properties effecting error in finite
difference or finite volume computations. All of the variational methods give
rise to systems of nonlinear equations which are lengthy and often difficult
to solve. It is this property that we wish to avoid by applying the
variational principle on a local basis. The algorithms will be simpler
because the objectives are limited. The objective is not to generate a
completely new grid but to improve an existing algebraic grid. The grid
smoothing methods will be applied in the same spirit as the smoothing filters
commonly used in data analysis. The smoothing algorithm will only be applied
a few times with little interest in the eventual convergence of the grid or

properties of a converged grid.



INTERFACE PROCEDURES FOR OVERLAPPING GRIDS*

C. Wayne Mastin

Department of Mathematics and Statistics
Mississippl State University

Mississippl State, MS 39762

Abstract

Interpolation at grid boundaries is studied for the
purpose of solving partial differential equations using
either implicit or conservative explicit finite-difference
methods on multi-component overlapping grid systems.

1. INTRODUCTION A multi-component grid system, in which
several computation grids are used, is required in the nu-
merical solution of many fluid dynamics problems involving
flow within or about a complicated geometric configuration.
From a grid construction point of view, the simplest proce-
dure is to generate each component grid independently with a
sufficient overlap so that information can be transmitted
from one grid to the other. The development and analysis of
solution procedures on this type of grid system was studied
by Starius [8,9]. The practical application of the method to
the solution of problems in computational fluid dynamics was
demonstrated in the papers by Atta [1], Atta and Vadyak [2],
and Thompson [11]. This was followed by further studies on
interpolation techniques by Kreiss [5] and Mastin and
McConnaughey [6]. Each successful application, such as the
recent results of Steger and Buning [10] and Benek, et al
[3], serves to reinforce the need for additional work on the
implementation of numerical methods on overlapping grids.

*Research supported by NASA Langley Research Center
under Grant No. NSG 1577.



Two popular numerical methods in computational fluid
dynamics are the alternating direction implicit algorithms
and the explicit algorithms derived for the solution of
conservation laws. Both methods have been used in the solu-
tion of problems on composite grid systems. However, in each
case there are properties of the numerical solution which are
lost when information is transmitted between the individual
grids. With the implicit algorithms, there is no technique
for generating advanced solution values at all boundary
points of each component grid. Lagging some of the boundary
point values can lead to a loss of accuracy in the solution
of transient problems. Of course, the temporal step length ;
could be reduced, but that would defeat the purpose of choos- t
ing an implicit method. It is also possible that lagging may ;
effect the stability of the method, although no problems of
that kind have been reported.

A conservative finite-difference scheme is often se-
lected when solving partial differential equations in conser-
vation form. Since the classical interpolation formulas were
not derived with conservation properties in mind, their use
in finite-difference approximations on composite grids would
result in the loss of an exact conservation property. An
interpolation scheme for conservative finite-difference
methods was first proposed by Rai [(7]. He considered compos-
ite grid systems which did not overlap but joined along
common grid lines. Berger [4] indicated how the method of
Rai could be generalized and extended to overlapping grids.

This report will describe ways of eliminating the time
lag in implicit solutions and will present a general algo-
rithm for constructing conservative interface conditions.
The variables x and y are used as the spatial variables in
the partial differential equations. Since, in the general
case, one would need to solve the equations on a curvilinear
grid, all equations would be transformed to curvilinear
coordinates before applying the finite-difference algorithm.
In each development the partial differential equation is
sufficiently generally so that the method can be applied to
the original or the transformed equation without change. For
simplicity, mixed derivative terms which are normally lagged
in the single grid case and source terms are not included in
the partial differential equations.

2. IMPLICIT METHQDS The fundamental concepts are quite
simple and can be demonstrated by considering the one-dimen-
sional equation

u = Lu , (1)

where L 13 a differential operator of the form
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Lu = Aux + Buxx

Since implicit methods generally require linearization of the
difference equations, it may as well be assumed that L is
linear. Suppose that two grids G and G are given on the
intervals [a,d] and [c,b], respectively. where

a<e<d<hb.

If M denotes the usual second-order difference approximation
of L, then the Crank-Nicolson equation can be written as

?*1 - uf + At (Mu"” + muf). (2)

Here {1 is the spatial index, n is the temporal index, and At
is the step length. Now suppose values on G; and G, are
known at level n and values at level n+!1 are to be computed
on G;. While solution values needed in (2) at x=d can be
interpolated from 62 for level n, the corresponding values at
level n+1 are unavailable. If these unknown values are
replaced by the values at level n, then the local truncation
error at the neighboring éntesior point is increased by a
term on the order of 0(At</ The value Ax represents the
spatial grid spacing on G,. or the spacing at x=d in the case
of a nonuniform grid. In any event, when Ax is small, this
lagging of solution values will seriously degrade the tempo-
ral accuracy of the approximation. The error can be reduced
by following a particular order in updating the solution
values at the interior grid boundary points. The correct
sequence of computations is indicated in the following steps.

Calculate u™*! on G, with level n values at x=d.

Calculate u™! on G, with level n+1 values at x=c.
Calculate u“+2 on 62 with level n+1 values at x=c.
. Calculate u™*€ on G, with level n+2 values at x-d.

EWN =
L]

Now the error induced by using the previous value at x=d in
step 1 is offset by the use of the advanced value in step 4.
In fact, the local truncation error at the nel bor ng inte-
rior point is increased by a term of order O(At /Ax ) when
the solution is advanced from level n to n+2. The same error
reduction would also occur at x=c.
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Clearly, this four-step alternating grid scheme is only
a partial solution. Unless the solution exhibited a linear
growth or decay, there would still be points with a local
truncation error of order one whenever At=Ax. However, this
does not necessarily mean that the global error in the nu-
merical solution would be increased to that order. The
actual error in the solution would also depend on other
factors such as the extent of the overlap. Note that the
same updating procedure could be applied to implicit methods
other than the Crank-Nicholson method, but the reduction in
local truncation error would not be the same.

The alternating grid concept has also been used in the
development of another method for implementing impliecit
algorithms on composite grid systems. This method also alter-
nately employs the forward difference explicit equation

u?*‘ = uf + at Muf (3)

and the backward difference implicit equation
T R X 3 L TT L (4)

The computational sequence is illustrated in the following
four-step procedure which advances the solution from level n
to level n+2.

1. Calculate u™! on Gy using (3).
2. Calculate u™! on G, using (4).
3. Calculate u™< on G, using (3).
4. Calculate u™*“ on Gy using (4).

The method alternates the explicit and implicit calculations
in the same manner as the well-known hopscotch algorithm.
Thus, the name hopscotch will be associated with this method.
The method has several desireable properties. All values
needed at the grid boundaries ¢ and d can be computed by
interpolation from solution values at the correct time level.
The overall method is second-order accurate in time and
unconditionally stable. This fact follows by noting that the
combined sequence of (3) followed by (4) is equivalent to a
Crank-Nicolson step with step length of 2At.

The consequences of lagging solution values at grid
boundaries can be even more serious for multi-dimensional
problems. Suppose for example that the operator L in (1) is



defined as

Lu = Aux + Buy + Cuxx + Duyy .
Let Mx and M, denote the difference approximations of the x
and y deriva{ive parts of L. If the parabolic equation (1)
is solved by an ADI method, such as Peaceman-Rachford, the
algorithm becomes

un*1/2 _ yn o ARy net2 oy oy (5a)
2 X y
t
S L V-2 g__(uxun+1/2 . Myu"+1). (5b)

Now the error that occurs in the first step of the algorithm
is further magnified in the second step. This argument can
be made more precise by noting that the Peaceman-Rachford ADI1
method is a perturbation of the two-dimensional Crank-
Nicolson method with a perturbation term

2
At
Mzﬁg(u -y

A lagged value in thjis tsrn produces a truncation error term
on the order of 0(At-/Ax ﬁ he alternating grid procedure
would reduce this to 0(At"/ . The one-dimensional
hopscotch algorithm would not be a computationally efficient
method for two-dimensional problems. However, the same

effect can. be realized by inserting additional steps in the
ADI algorithm. The procedure is again demonstrated using two
grids G, and G,. Note that equation (5a) can be written as

n+1/2 n , At n n

v =u = (Mu™ + Myu ) (6a)
At

un"" /2 - vn+1/2 ‘—5_ (qun+1 /2 - qun)’ (6b)

while (5b) can be replaced by

———n e senen =~ |




At
v+l o net/2 +___:E_(qunﬂlz . Myun+1/2) (6¢)
un+1 - vn+l + At ( un+1 - M un*1/2) ' (6d)
2 HY y *

These split forms would require additional computations, and
should only be used to generate interpolated values at inte-
rior grid boundaries. The following steps illustrate one
possible method of computation.

1. Calculate v**1/2 on G, using (6a)
2. Calculate u"*'/2 on G, using (5a)
3. Calculate u"*'/2 on Gy using (6b)
4. Caleulate v**! on G, using (6c)

5. Calculate u™! on Gy using (5b)

6. Calculate u™! on G, using (6b)

Note that at each step the necessary boundary values for one
grid can be interpolated from values at the correct level on
the other grid.

The efficacy of the alternating grid and hopscotch
methods is exhibited in the solution of a one-dimensional
model problem. The parabolic equation

ug + (u-eluy = u uy, (7
has an exact solution
2(x+1)+(2¢-1)t

1
U(X,t) - ) (1 - tanh uu_ )a

This equation is solved on the interval [-2,2] with the exact
initial value at t=0 and boundary values at x=-2 and x=2. A
second-order linearization and the usual central difference
approximations are used. An overlapping set of two grids on
the intervals [-2,.125] and [~.125,2] is constructed. The
solution for values of c=0.4 and u=0.05 is computed using
three different methods. The form of the actual solution
indicates that an increase in t would result in a translation
of the graph in the positive x direction. When a numerical
solution is computed with the Crank-Nicolson equation (2) and
the values at x=1.125 are lagged, there is a marked deviatfon
between the numerical and analytic solutions as they pass
through the overlap interval. Although the numerical solu-
tion lags behind the actual solution, they are qualitatively
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similar with no indication of instability in the numerical
solution. A comparison of the solutions at various times is
plotted in Figure 1. The lag in the numerical solution is
eliminated when the alternating grid method is used. A
careful examination of Figure 2 reveals an anomaly in the
graph at the grid points adjacent to the interior boundary
points x=+.125. This is more evident on the enlargement in
Figure 3. Note that the problem occurs only at the points
where the exceptional difference approximation is employed.
The most accurate numerical solution for this example is
calculated using the hopscotch algorithm. That solution
appears in Figure 4. 1In all of these figures, linear inter-
polation was used to determine solution values at grid bound-
aries. ‘

3. METHODS FOR CONSERVATION LAWS If the conservation
equation

ue + [f(u)l, =0 (8)

is solved on a composite grid system, then there must be some
means of transferring the flux f(u) from one grid to the
other. There are two feasible alternatives. Either the
solution u can be calculated by interpolation and then f(u)
evaluated, or f(u) can be interpolated directly from the flux
values on the other grid. The conservative difference sch-
emes which will be discussed require interpolation of fluxes.
However, before proceeding in that direction, a comparison of
the two interpolation techniques will be included.

Suppose a solution value u¥ at a boundary point of grid
G1 is computed by linear interpolation from the solution
values u,_, and uy defined on grid Gz. Then an interpolation
formula of the form

u¥ = Gui_' + Buiy a+ g =1,

holds, and the flux can be evaluated as f(u¥*). Now if
the actual value of the solution at the boundary point of G,,
and hence the true flux value is f(u,), then the interpolatl-
on procedure introduces an error as ?s seen in the following
expansion.

f(au1_1+8ui) = f(uo)+fu(uo)(uu1_1+8u1-u0)

+
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Figure 3. Spurious values resulting from alternating

grid update
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Since an expansion at the boundary point Xq yields

1
aug_y + Buy - Up = 5 Upolalxy_1-xg)? + Blxy=x)?),

+ eee

the leading term in the local truncation error is
L (ughuyn(a(xyog=xg)2 + B(x{-X)2)
2 ‘utYo/Uxx0'®tX1-17%g 17%’ -

Whenever the option of interpolating the fluxes is selected,

then the boundary flux f* is calculated directly as
£ ’- a f(u1_1) + Bf(ui).
Expanding about the solution Ug» and noting the additional
second order term,
a r(ui"‘1) + B f(ui) o r(uo) + ru(uo)(aui_1"’8u1‘00)

* 5 Tuglug)(aluyq-ug)? + BCuy-ug)?)
+ e .

The leading term in the local truncation error now has the

form
2 (£Cugdtee *+ Lun(Ugligo)alx;1xg)2 + Bxg=x0)2)).

It is clear tgat both procedures give an interpolation error
which is 0(Ax€).

There are many conservative finite—-difference algorithms
for solving conservation laws of the type (8). Most of the
basic algorithms of practical interest can be written as
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uf*? - u] = gulyy D) - guf,ul ). (9)

For notational convenience, let

Bi+1/72 = 8(Ui1huy) ,

with the implication here being that 8i+1/2 is an approxima-
tion at X{41/2° This notation is appropriate for the central
difference approximations such as the Lax or Lax-Wendroff
schemes. When one-sided or upwind differencing is used, the
fractional index 1+1/2 would be replaced by { or i+1.

Given a grid with gridpoints Xy, {=0,1,...,I, the discrete

conservation property states that

I-1 : I-1
n+ n n - SN
121 uy - 121“1 * B1-1/2 ~ 8172 -

The same result can be obtained from (8) by using numerical
integration from Xy/2 O Xy-1/2 and the flux approximation
determined by g. It is this derivation that will be used in
the composite grid approach.

Let G, and G, be grids defined on the intervals [a,d]
and [c,b], a<c<d<b. The grid G, has points x;, 1=0,1,...,I
and grid spacing Ax, and 62 has points y,, j=0,1,...,J and
spacing Ay. The difference equations will be written in
terms of scaled solution values v and w defined by

v = uAx and W = UAy

On G1, the difference equation has the form

n+lt _ . n _,.n IS ¢ |
vy Vi = hjs1/72 ~ hi-1/2

and on Gz-
o el - KD
J J J+1/2 J-1/2 -

There is good reason for writing the equations in this form.
First of all, the grid spacing need not be included in the
interpolation formulas, but more importantly, this is the
required form of the difference equations when computing on
moving grids.




The correct interface conditions can now be derived by
extending the grid functions to plecewise linear functions
and integrating. Suppose a value k1/2 is needed. Then the
interval [a,b] is partitioned into two subintervals [a, Y/ ]
and [y 1/2:03. If y1/2 lies in the interval [xi 1/2+%X441/23s
and h and h /2 are known, then the value for k1/2 can
be caicu{ated rrom the integral property

hy kx = Kg-172 “hyy2
X1/2 Y172

Assuming that h and k are piecewise linear, it is easily seen
that the needed value is the linear interpolant defined as

(3’1/2 {yJ-I/Z

Kiy2 = @ hy 4/ * B hyyq/0

vwhere

Xq41227Y142 Y1./2"X4-1/2
a = o '8

X{+1/27%1-1/2 Xje1/27%4- 1/2

By the same argument, the interval [a,b] can be partitioned
into (a,xy_y,5] and [x;_4/5,b] and the interpolation formula

for the value hI-1/2 is

hpq72 = @ Kyoq72 *+ B Kyuq/2

where
Y341/07%X1-1/0 X1-1/2"Yi-1/2
a = - '8- -r .
Yje1/27Y3-172 Yje1727Y5-172

The same linear interpolation would be used on a non-
uniform grid. Of course, the scaling factor would vary from
point to point. An interpolation formula could also have
been derived using the original equation (9), however the
difference in grid spacing on G and G, would have resulted
in the appearance of a scaling factor %n the interpolation
formula.

A modification of this approach can be used to develop
congervative interface conditions for two and three-dimen-
sional problems. The general two-dimensional conservation
law is
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ut+fx+8y-o’

where x and y are now the spatial variables. A difference
approximation has the form

n+1 n n -
Vi, 3 = Vi3 * Bis/2,;

n n - n
hi-1/2,3 * Ki,3+172 = Kg, 3-1/2¢ (10)

The grid function v is the product of the solution u and the
Jacobian (or cell area), and the values of h and k are, up to
a scalar factor, flux values in the direction of the curvi-
linear coordinate lines. Let G, and G, be overlapping grids
and suppose values of h are required along the i = 1/2 grid
line of G1. For now, it is assumed that the endpoints of the
grid line are on the boundary of the physical region. The
points of Gy along the grid line are labeled using parameter
values from any convenient parameterization. Thus, let

pJ - (x«‘/z'J, y1/2,J)p J-0,1.....J,

while points of intersection of the 1 = 1/2 grid line of Gy
with all grid lines of 62 are ordered and labeled

g = (Xg, ge50 V1, 508) OF (Xgag 30 Yieg,9)0

£=0,1,...,L

where § denotes a fractional index between O and 1, and {,]J
are the indices of some point in G,. The first step in the
transfer of flux values from G, to G; is to define flux
values at the points qg. If qy lies on an i=constant grid
line, as in the first case above, then a value h} is computed
by interpolating the grid function k. On the other hand, if
Gy lies on a j=constant grid line, then h} is computed by
interpolating h. Now the 1 = 1/2 grid line divides the
physical region into two parts, one covered by G1 and the
other covered by a subset of G,. If piecewise linear flux
functions are constructed along the grid lines in each sub-
region and an integration of the flux derivatives over the
complete region is performed, then the conservation property
requires that
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Here the 1 and n indices in (10) have been suppressed.

The interpolation formula will be defined using a set of
basis functions. Two additional parameter values are intro-
duced by extrapolating from the parametric interval. Let q_,
= 29y - qq and qpq = 2qp, = qp-1- Let yy be the plecewise
linear function. wlth knots Q. t=-1,0,...,L+1, defined as

1, m=%

ve(q,) =
1> m { 0, méf

where £=0,1,...,L, and m=-1,0,...,L+1. The following inte-
grals can be easily computed from the parametric values of
the points along the grid line.

.
AL+
g = vy
q-4 :
Pi/2
Bge0 = vy
IPg
Pjy+1/2
AL J - J *1 ] J-1’2"00.J—1
»
IPj-172
.
Py
8,0 " vy,
IPg-1/2

These integrals are used in calculating the coefficients of
the interpolation formulas. The formulas can now be written
as
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L 8y,
hy =2 zzo —3—’-‘— hf, for J=0 and Jj=J,
and (12)

LINE] hf, for §=1,2,...,J-1 .
4,

The fact that property (11) holds is readily verified.
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A few remarks are sufficient to indicate how the same
interpolation method can be employed in more general compos-—
ite grid configurations. If interpolation is required on a
boundary component consisting of several i=constant and
J=constant segments, then each boundary segment could be
treated separately with either an h value or a k value calcu-
lated from equations (12). However, the extrapolated parame-~
ter values would not be used in computing the coefficients,
but instead a single parameterization would be defined for
the entire boundary component. If the boundary component
were a closed contour in the interior of the physical region,
then the special boundary interpolation formulas for j=0 and
J=J in (12) would be unnecessary.

The selection of a set of plecewise linear basis func-
tions to define the interpolation coefficients may be changed
with only slight modification. One could just as easily use
plecewise constant functions or use higher degree polynomials
such as quadratics or cubics. The degree of interpolation
may have differing effects on the numerical solution. The
use of a plecewise constant basis may produce shock-like
discontinuities, whereas a linear basis would tend to smear
out any discontinuities in the solution.

The conservative finite-difference scheme of MacCormack
is used to solve the parabolic equation (7) which can be
written in conservation form as
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u, + (1/2(u—c)2 -u “x)x = 0.

This equation is solved on two overlapping grids on the
intervals [-2,.25) and [-.25,2] with the same values of c=0.4
and u=0.05 as in the previous section. The numerical dissi-
pation in the MacCormack scheme permits the use of a coarser
grid than was used for the implicit methods. Figure 5 con-
tains the solution plotted for various values of t. For this
example, there was no noticeable difference between solutions
computed with flux values interpolated and those computed
with interpolation of solution values.

While the choice of interpolation methods will have some
effect on the numerical solution, a more fundamental question
for hyperbolic equations is when interpolation should be used
to generate boundary values for a grid and when the boundary
values should be determined by interior solution values using
some numerical boundary condition. If the characteristic
direction at a boundary point of an overlap region is exterior
to the region, then any attempt to impose boundary values by
interpolation would result in an overdetermined problem.
Since the same problem is being solved on both grids in the
overlap region, the difference between the interpolated value
and the value of the solution determined by the
characteristics would be significant only for problems with
shocks or other high gradient regions. When the difference
is significant, as in the following example, the numerical
solution exhibits the familiar oscillatory form.

1.50 T ] T | o i

1.250— -

1.00

S0

I%—

0 | | ;
‘200 ‘1 -5 ‘1 -0 --5 0 .5 l-O l-s 2-0
X
Figure 5. Conservative explicit solution




A simple two-dimensional conservation law is given by
Py + (up)y + (vp)y = O.

Two grids are used to construct a solution on a rectangular
region. Let G1 denote a grid covering the points with
coordinates satisfying

0O0sxs1,08ys1,
and let Gz cover the points with
0.9 $xs51.9, 08y s 1.

Now choose constant values u=1 and v=0. The necessary
boundary values are given as

1.0 if ys0.5 ,

p(oath) = {
0.5 if y>0.5 .

The steady-state solution to this essentially one-dimensional
problem is p=1.0 for ys<0.5 and p=0.5 for y>0.5. A numerical
solution is computed using MacCormack's method with
conservative interpolation formulas at the boundary x=1 of
grid G, and the boundary x=0.9 of a coarser grid G,. A plot
of the.solution at the interior grid points appears in Figure
6. The error caused by the inconsistency in the interpolated
value near the discontinuity is clearly evident. This
particular solution is computed with an interpolation formula
derived from piecewise linear basis functions. The same
behavior is observed when piecewise constant basis functions
are selected. In this example the error is practically
eliminated by extrapolating from Gy to obtain boundary
values of p along x=1, The successful solution of the
problem is illustrated in Figure T.

It is noted that even when numerical boundary conditions
are used, the numerical solution still satisfies a
conservation property provided the region can be partitioned
along contours where the conservative interpolation scheme is
applied. In the above example the divergence integral would
be approximated using values of p on G, for 05xs$0.9 and
values on G, for 0.9s5xs1.9.

4, CONCLUSIONS The accuracy of the transient solution of
a hyperbolic or parabolic partial differential equation is
dependent upon the procedures used to transfer information
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Figure 6. z=p(x,y) surface with interpolation on
overlap boundary
L5 S
b Figure 7. z=p(x,y) surface with interpolation and

extrapolation on overlap boundary
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between grids in a composite grid system. The error in the
numerical solution can be reduced by using the techniques
developed here. While the attempt has been to construct
algorithms that are easy to implement, the degree of diffi-
culty would ultimately be linked to the complexity of the
grid structure.
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